Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Civil Engineering

BCE501 - STRUCTURAL ANALYSIS - I Fifth Semester, 2017-18 (Odd Semester)

Course (catalog) description

To introduce the students to basic theory and concepts of structural analysis and the classical methods for the analysis of structures.

Compulsory/Elective course	:	Compulsory for Civil students
----------------------------	---	-------------------------------

Credit/ Contact hours : 4 credits / 60 hours

:

Course Coordinator : Dr.S.J.Mohan

Instructors

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Dr.S.J.Mohan	Third year Civil	Civil Block		mohansjm@yahoo.com	9.00 - 9.50 AM

Relationship to other courses:

Pre – requisites : **Basic Structural Design**

Assumed knowledge Concepts of structural analysis and the classical methods :

Following courses NIL :

Syllabus Contents

UNIT I INDETERMINATE ANALYSIS

Indeterminate Structures: Introduction to static and kinematic Indeterminacy- two and three dimensional pin jointed and rigid jointed structures-space trusses-Energy method-application to indeterminate pin jointed trusses-temperature effect-beams curved in plan.

12

12

UNIT II SLOPE DEFLECTION METHOD

Slope deflection method: Analysis of continuous beams and portal frames with single storey.

UNIT III MOMENT DISTRIBUTION METHOD

12 Moment distribution method: Stiffness and distribution factors-carry over factor-analysis of continuous beams -single storied portal frames.

12

UNIT IV ROLLING LOADS

Rolling loads: Single concentrated loads - two concentrated loads-uniformly distributed loads-curves of maximum SFD and BMD equivalent. UDL

Influence line for statically determinate beams for bending moment and shear force- absolute maximum BM-concentrated and UDL-Influence line for forces in members for statically determinate truss parallel chord truss.

TEXT BOOK:

1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis – Vol. 1 & Vol. 2",Laxmi Publications, New Delhi, 2003.

REFERENCE:

1. Bhavai Katti, S.S, Structural Analysis – Vol. 1 & Vol. 2, Vikas Publishing Pvt Ltd., New Delhi,2008

2. Analysis of Indeterminate Structures – C.K. Wang, Tata McGraw-Hill, 1992.

3. Negi L.S. Jangid & R

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area: Concepts of structural analysis and the classical methods

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1st weekSession 1 to 142 Per		2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

H: high correlation, M: medium correlation, L: low correlation

To introduce the students to basic theory and concepts of structural analysis and the	Correlates to program outcome		
classical methods for the analysis of structures.	н	Μ	L
1. Analyze the pin jointed plane frames using energy and consistent deformation method	a,e,	b,d	
2. Analyze indeterminate structures using various classical methods.	b	е	
3. Determine absolute maximum bending moment and shear force in beams due to moving loads.	a,e		
4. Find the maximum moment, shear and stresses produced in arches due to external loads temperature effects and support settlements.	а	d	
5. To find the influence line diagram for determinate structures.		е	

Session	Topics	Problem solving (Yes/No)	Text / Chapter	
UNIT I	INDETERMINATE ANALYSIS			
1.	Introduction to static and kinematic Indeterminacy	Yes		
2.	Two dimensional rigid jointed structures	Yes		
3.	Two dimensional pin jointed structures	Yes		
4.	Three dimensional pin jointed	Yes		
5.	Three dimensional rigid jointed structures	Yes		
6.	Space trusses	Yes		
7.	Energy method	Yes	[T1, R2]	
8.	Application to indeterminate pin jointed trusses	Yes		
9.	Application to indeterminate pin jointed trusses	Yes		
10.	Pin jointed trusses	Yes		
11.	Temperature effect-beams curved in plan	Yes		
12.	Temperature effect-beams curved in plan	Yes		
13.	Slope deflection method	Yes		
14.	Analysis of continuous beams	Yes		
15.	Analysis of continuous beams	Yes		
16.	Analysis of continuous beams	Yes		
17.	Analysis of continuous beams	Yes		
18.	Analysis of continuous beams	Yes		
19.	Portal frames with single storey.	Yes		
20.	Portal frames with single storey.	Yes	[T1, T2 & R3]	
21.	Portal frames with single storey.	Yes		
22.	Portal frames with single storey.	Yes		
23.	Portal frames with single storey.	Yes		
24.	Portal frames with single storey.	Yes		
JNIT III	MOMENT DISTRIBUTION METHOD			
25.	Moment distribution method	Yes		
26.	Stiffness and distribution factors	Yes		
27.	Carry over factor	Yes		
28.	Analysis of continuous beams	Yes		
29.	Analysis of continuous beams	Yes		
30.	Analysis of continuous beams	Yes		
31.	Analysis of continuous beams	Yes	[T1, T2 & R3]	
32.	single storied portal frames	Yes		
33.	single storied portal frames	Yes		
34.	single storied portal frames	Yes		
35.	single storied portal frames	Yes		
36.	single storied portal frames	Yes	1	
JNIT IV	ROLLING LOADS			
37.	Rolling loads	Yes		
38.	Single concentrated loads	Yes	[T1, T2 & R3]	
39.	Single concentrated loads Page 3 of 7	Yes		

40.	Two concentrated loads	Yes	
41.	Two concentrated loads	Yes	
42.	Uniformly distributed loads	Yes	
43.	Uniformly distributed loads	Yes	
44.	Curves of maximum SFD and BMD	Yes	
45.	Curves of maximum SFD and BMD	Yes	
46.	Curves of maximum SFD and BMD	Yes	
47.	Equivalent. UDL	Yes	
48.	Equivalent. UDL	Yes	
UNIT V	INFLUENCE LINE DIAGRAMS		
49.	Influence line for statically determinate beams for bending moment and shear force- absolute maximum BM	Yes	
50.	Influence line for statically determinate beams for bending moment and shear force- absolute maximum BM	Yes	
51.	Influence line for statically determinate beams for bending moment and shear force- absolute maximum BM	Yes	
52.	Concentrated and UDL	Yes	
53.	Concentrated and UDL	Yes	
54.	Concentrated and UDL	Yes	
55.	Influence line for forces in members for statically determinate truss parallel chord truss	Yes	[T1, T2 & R3]
56.	Influence line for forces in members for statically determinate truss parallel chord truss	Yes	
57.	Influence line for forces in members for statically determinate truss parallel chord truss	Yes	
58.	Influence line for forces in members for statically determinate truss parallel chord truss	Yes	
59.	Influence line for forces in members for statically determinate truss parallel chord truss	Yes	
60.	Influence line for forces in members for statically determinate truss parallel chord truss	Yes	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	5%
Assignment	-	5%
Attendance	-	10%
Final exam	-	70%

Prepared by: Dr.S.J.Mohan, Professor, Department of Civil Engineering

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / Civil / program by the time that they graduate:

- a. An ability to apply knowledge of mathematics, science, and engineering
- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively
- h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i. A recognition of the need for, and an ability to engage in life-long learning
- j. A knowledge of contemporary issues
- k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Civil Engineering graduates will have knowledge to apply the fundamental principles for a successful profession and/or for higher education in Civil Engineering based on mathematical, scientific and engineering principles, to solve realistic and field problems that arise in engineering and non engineering sectors

PEO2: CORE COMPETENCE

Civil Engineering graduates will adapt to the modern engineering tools and construction methods for planning, design, execution and maintenance of works with sustainable development in their profession.

PEO3: PROFESSIONALISM

Civil Engineering Graduates will exhibit professionalism, ethical attitude, communication and managerial skills, successful team work in various private and government organizations both at the national and international level in their profession and adapt to current trends with lifelong learning.

PEO4: SKILL

Civil Engineering graduates will be trained for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS

Civil Engineering graduates will be installed with ethical feeling, encouraged to make decisions that are safe and environmentally-responsible and also innovative for societal improvement.

Course Teacher	Signature
Dr.S.J.Mohan	

Course Coordinator

HOD/CIVIL